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The existence of at least three types of opioid receptors 
(n, K, 5) is now well established.1 The K-opioid receptor 
has been of special interest because its activation produces 
analgesia with minimum physical dependence and res­
piratory depression.2 Moreover, the recent cloning and 
sequencing of the K-opioid receptor have heightened the 
need for additional K ligands, particularly antagonists, as 
probes.3 In particular, a /(-selective affinity label would 
be useful because it could be employed as a biochemical 
probe to identify the binding locus on the K receptor and 
also be used as a pharmacologic tool in vivo. While a 
number of/c-selective affinity labels have been reported,4-8 

as evidenced from receptor binding studies, no pharma­
cological activity has been published for such ligands. Here 
we report on the first documented example of an arylac-
etamide affinity label 1 (DIPPA) that possesses K antago­
nist activity in vivo. 

Because 2-(3,4-dichlorophenyl)-2V-methyl-AT-[2-(l-pyr-
rolidinyl)cyclohexyl]acetamide (U50,488)9'10 is a highly 
selective /c-opioid receptor agonist, numerous structurally 
related arylacetamide analogues also have been studied. 
The design of target compound 1 as an affinity label was 
based on the report that arylacetamide 2 is a highly potent, 
K-selective ligand.11'12 

The synthesis (Scheme 1) of 1 involved the nitration of 
optically pure 311 to afford a mixture consisting of m- and 
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Figure 1. Time-course of antagonism of U50,488antinociception 
by DIPPA (0.53 ^mol/kg sc). Antinociception was measured by 
the tail-flick assay 20 min after sc administration of U50.488 in 
mice. The ED50 ratio is the ED50 of U50.488 in the presence of 
1 divided by the control ED50. Error bar indicates the upper 
limit of the 95 % confidence intervals. 

1, DIPPA, R = NCS 
2, R = H 

p-nitro isomers which were coupled to 3,4-dichlorophen-
ylacetyl chloride to yield enantio- and regioisomerically 
pure 5 after chromatography and crystallization. Raney 
nickel reduction of 5 followed by reaction with thiophos-
gene gave the target compound 1. 

Using the mouse abdominal stretch assay,13 the anti­
nociceptive effect of both 1 and 2 peaked 30 min after sc 
administration and completely disappeared after 4 h. The 
weaker antinociceptive potency of 1 relative to that of 2 
also was indicated by its inability to produce antinoci­
ception (2.11 jtmol/kg sc)14 in the tail-flick assay,13'15 which 
is less sensitive for detecting K receptor activation.16 

Compound 1 was selective for K-opioid receptors, as 
reflected by the fact that norbinaltorphimine17 (nor-BNI) 
significantly increased the ED50 of 1, while the 5 and n 
antagonists, naltrindole18 (NTI) and 0-funaltrexamine19 

(/3-FNA), were ineffective in this regard (Table 1). 
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Table 1. Antinociceptive Potency and Selectivity in the Mouse Abdominal Stretch Assay 

compd 

1 
2 

ED50, /jmol/kg 

1.53 (1.11-2.06) 
0.017 (0.013-0.022) 

nor-BNI M 

16.7 (10.0-25.0)1' 
2.31 (1.6-3.3)e 

EDw ratio" 

NTI (S) 

1.25 (0.76-2.04)" 
1.19 (0.55-2.77)" 

0-FNA (M) 

3.03 (1.89-5.26)d 

1.72 (1.00-2.86)/ 

° The ED50 of the agonist (sc) in the antagonist-treated mice divided by the control ED50; numbers in parentheses are 95% confidence lvels. 
6 Nor-BNI (12.25 jimol/kg sc) was administered 3.5 h prior to agonist." NTI (44.44 ^mol/kg sc) was administered simultaneously with agonist. 
d 18-FNA (10.18 /jmol/kg sc) was administered 24 h prior to agonist.e Nor-BNI (12.25 /umol/kg sc) was administered 1.5 h prior to agonist/ 0-FNA 
(20.36 jumol/kg sc) was administered 24 h prior to agonist. 

Table 2. Antagonist Potency of DIPPA 4 h after Administration Using the Mouse Tail-Flick Assay" 

agonist6 selectivity control" treated" 

U50.488 K 26.7(20.4-34.6) 254(203-321) 
morphine \i 9.1(6.3-38.4) 16.7(11.6-22.9) 
DPDPE 6 8.1(6.2-10.6) 10.5(7.5-15.2) 

EDw ratiod 

9.1 (6.7-14.3) 
1.8 (0.8-2.9) 
1.3 (0.8-2.1) 

° Antagonist dose of 1,0.53 ^mol/kg sc. b U50.488 and morphine were administered sc at 220 and 210 min after administration of antagonist, 
respectively. DPDPE was administered icv at 220 min after administration of antagonist.c EDeo's are in micromoies per kilogram for U50.488 
and morphine and nanomoles/mouse for DPDPE. d ED50 of agonist in the antagonist-treated mice divided by the control ED50; numbers in 
parentheses are 95% confidence levels. 

Table 3. Opioid Receptor Binding of DIPPA" 

selectivity 

5e 

ICw.'-nM 

2.21 
1799 

>iooo/ 
" Conducted on guinea pig brain membranes using the procedure 

of Werling et al.20 b Values are geometric means of three replicate 
experiments for K and 11." [3H]U69593 or [3H]-(5a,7a,8/S)-(-)-iV-
methyl-iV-(l-pyrrolidnyl-l-oxaspiro[4.5]dec-8-yl)benzeneaceta-
mide (1 nM).33 * [3H]DAMGO or [3H]-[D-Ala2,MePhe4,Gly-ols]-
enkephalin (2 nM).34• [3H]DPDPE or [3H]-[D-Pen2,D-Pen5]en-
kephalin (5 nM).36 'Value is based on two experiments. 

In the mouse tail-flick assay,13'161 (0.53 jumol/kg sc) was 
found to be an antagonist with selectivity for /c-opioid 
receptors (Table 2). The antagonism peaked at 4 h 
postadministration and lasted at least 48 h (Figure 1). In 
contrast, the parent compound 2 (0.598 ^mol/kg sc) was 
found to have no antagonist activity within the same time 
period. Thus, it appears that the electrophilic isothio-
cyanate group was responsible for the long-lasting an­
tagonist activity of 1, presumably as a consequence of 
covalent binding to the receptor. 

Receptor binding studies20 indicate that 1 binds selec­
tively and with high affinity to x-opioid receptors (Table 
3). Both 1 and 2 are full agonists in smooth muscle 
preparations,21 although the parent compound 2 is 173-
fold more potent than 1 in the guinea pig ileum (GPI) 
(Table 4). The strong antagonism of 1 (Ke = 0.3 nM) and 
2 (Ke = 0.05 nM) by nor-BNI18 indicate interaction with 

Table 4. Agonist Potencies in Smooth Muscle Preparations 

ICw," nM 

compd GPI MVD 

1 23.8 ± 4.2 11.1 ± 4.4 
2 0.199 ± 0.085 1.60 ± 1.65 

K„brM 
GPI 

0.3 
0.05 

" Values are means of at least three experiments; numbers in 
parentheses represent SEM values. b GPI was incubated with 5 and 
20 nM nor-BNI for 15 min before 1 and 2 were tested, respectively. 
K, (nM) = [nor-BNI]/(ICw ratio -1), where the IC50 ratio is the IC50 
of the agonist in the presence of antagonist divided by the ICJO in 
the absence of antagonist. 

K-opioid receptors. While 1 possessed antagonist activity 
in vivo, it did not produce antagonism in the GPI.22 A 
possible explanation would be tissue or species differences 
in K receptor subtypes. Additional studies would be needed 
to verify whether the differential activity of 1 in the GPI 
and mice is due to differences between K receptors in 
peripheral tissue and those in the CNS, to species 
differences, or to some other mechanism. 

There is increasing evidence that physically distinct 
agonist and antagonist binding domains may exist for 
G-protein coupled receptors (GPCR).23-27 Because opioid 
receptors belong to the GPCR superfamily,3'28-30 an 
analogous situation may be shared by the K-opioid receptor. 
Accordingly, a possible explanation for the biphasic in 
vivo effects of 1 would be that it binds both agonist and 
antagonist sites and becomes covalently bound only at 
the antagonist site. The antagonist effect of 1 would be 
observed only after the agonist effect is dissipated due to 
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its reversible dissociation from the agonist site. Alter­
nately, the reversibly bound ligand may act as an agonist 
and subsequently convert the receptor to an antagonist 
state after it becomes covalently bound at the same binding 
site. It is noteworthy that short-term agonism, followed 
by long-term antagonism, has also been reported for the 
opioid receptor affinity labels /3-chlornaltrexamine31 (0-
CNA) and [D-Ala2,Leu5,Cys6]enkephalin32 (DALCE). 

In conclusion, 1 is the first in vivo K-selective antagonist 
belonging to the arylacetamide class of ligands. Studies 
presently are in progress to determine the specific amino 
acid residue that is covalently bound by 1. 
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